
Roof Outlining Tool v0.2

Introduction
The roof outlining tool is split into two distinct sections, controlled by two classes:
‘RoofMapper’ and ‘RoofDrawer’. The mapping section uses Google Maps API to allow the
user to locate the roof(s) they wish to outline. The drawing section uses Google Maps
Static API and a canvas library to allow the user to outline the roof(s) and generate roof
data. This data can then be used with the Easy-PV PV System Quote Tool API to generate
a PV system quote for the drawn roof(s).

The tools are contained in the ‘roofmap-0.2.js’ file. We have also supplied a page which
shows the tools working. This comprises of a html file (index.html), a javascript file (UI.js)
and a CSS file (UI.css). This page is only for demonstration purposes – you will need to
create and style your own hosting page.

Dependencies : Konva.js, Google Maps API, Google Maps Static API,

Class RoofMapper
The RoofMapper class is intended firstly to geolocate an address provided by the user,
and secondly to display a google map centred on the geolocated address to allow the user
to adjust the map to the exact location of their property.

Initialization

let roofMapper = new RoofMapper(container, statusCallback);

Upon instantiation, a map will be generated within the given container element.

Arguments:
container : An element in which the map will be contained. The map’s size will be adjusted
to fill the container.
statusCallback : A function which is called when roofMapper’s status changes. It will be
passed one argument which is the new status. In the demo UI.js script, we use the
function ‘roofMapperStatusCallback’ as the callback, which console logs the new status,
displays it in an element on the page, and provides some context-sensitive help to the
user.

Using RoofMapper.setStatus()

Geolocation can be prompted using RoofMapper.setStatus(‘geolocate’, address). In
response, RoofMapper will change its status to either ‘geolocate success’ or ‘geolocate
fail’. These can be handled appropriately by the user within the statusCallback(status)
function.

Arguments:
status: A string, as displayed in the table below. Only a status that can be set by the user is
a valid argument.

address: A string, with each line of address separated by a comma. If no address is
supplied, it will default to ‘’, and the geolocation will fail. Although the tool will geolocate
any given address, we recommend that the first line of the address and the postcode are
used, as this gives the most accurate results. You need to collect the postcode in any case
as it is a required parameter for the subsequent Easy-PV API call.

Return object parameters:
success: A boolean which reflects whether or not the status was changed succesfully.
error: A string which contains error details. Only present if success = false.
status: The resulting new status.

Example:

let address = ‘Cambridge Industrial Estate, CB24 6AZ’;

roofMapper.setStatus(‘geolocate’, address);

// Returns {success: true, status:’geolocate’}

Valid values of status

Status value Resulting event Set by

‘initialized’ N/A. RoofMapper

‘geolocate’ Attempts to locate the inputted address. user

‘geolocate success’ The map zooms into the address. RoofMapper

‘geolocate fail’ N/A. RoofMapper

Example of a statusCallback function

let statusCallback = function(status){

if (status===’geolocate success’){

console.log(‘Address located on map’);

}

if (status===’geolocate fail’){

console.log(‘Address could not be found’);

}

}

Class RoofDrawer
The RoofDrawer class creates an HTML 5 canvas, imports a Google Maps image to the
canvas, and allows a user to outline the roofs of the building on which they wish to install
PV. It also generates a data object containing the roof outlines, which can subsequently be
passed to the Easy-PV API.

Initialization

let map = roofMapper.map;

let roofDrawer = new RoofDrawer(map, container, statusCallback);

Upon instantiation, a canvas with map background will be generated within the given
container element. Note that the canvas uses the element id ‘roofDrawerStage’.

Arguments:
map: A Google Maps map object centered and zoomed on the roof. This can be defined
using RoofMapper as shown in the code above.
container : An element in which the drawing canvas will be contained. The canvas’ size will
be adjusted to fill the container. For mobile use we recommend that the container uses as
much screen as possible.
statusCallback : A function which is called when roofDrawer’s status changes. It will be
passed one argument which is the new status.

Using RoofDrawer.setStatus()

Communicating with an instance of RoofDrawer is done by setting its status. In some
cases the status should be set externally by the user using roofDrawer.setStatus(status).
For example, to let the tool know that the user wishes to add a chimney, you would set the
status to ‘startObstructionChimney’. Others are set internally within RoofDrawer. For
example, once the chimney has been drawn by the user, the status will change to
‘obstructionComplete’.

In both cases, the statusCallback(status) function will be called if the status has been
changed succesfully .

Arguments:
status: A string, as displayed in the the table below. Only a status that can be set by the
user are valid arguments.
input: An object, only present when required by the status being set (see table below).

Return object parameters:
success: A boolean which reflects whether or not the status was changed succesfully.
error: A string which contains error details. Only present if success = false.
status: The resulting new status.

Example:

roofDrawer.setStatus(‘startRoofGutter’);

// Returns {success: true, status: "startRoofGutter"}

roofDrawer.setStatus(‘startObstructionChimney’);

// Returns {success: false, error: "Status "startObstructionChimney" can only
be set when the roof outline has been completed.", status: "startRoofGutter"}

roofDrawer.setStatus(‘drawPanels’,{roofID: 0, panelLayout: panelLayout,
pitch:25});

// Where panelLayout is an object returned by the Easy-PV API, located in
roofs[0].panelLayout.

// Returns {success: true, status: "drawPanels"}

roofDrawer.setStatus('undo');

// Returns {success: true, status: "initialized"}

Valid values of status

Status value and Input Resulting event Set by

‘initialized’ N/A. RoofDrawer

‘startRoofGutter’ Used to begin drawing a roof. The next
click on the drawing canvas will define the
first point of the roof’s gutter. Can be set
when status is ‘initialized’, ‘roofComplete’
or ‘obstructionComplete’.

user

‘drawingRoofGutter’ For desktop users, a line representing the
roof’s gutter will be drawn directly
between the first point and the cursor.
The line will follow the cursor as it moves
over the canvas.
The next click on the drawing canvas will
define the second point of the roof’s
gutter.

RoofDrawer

‘drawingRoofVertices’ The next click on the drawing canvas will
define the next roof vertex. If the first
vertex is clicked, the roof outline is
considered complete, and the status is
changed to ‘drawnLastRoofVertex’.

RoofDrawer

‘drawnLastRoofVertex’ Roof vertices become draggable, and
gutter text is added to the drawing
canvas.

RoofDrawer

‘roofComplete’ Roof vertices become static. user

‘startObstructionChimney’,
‘startObstructionVelux’,
’startObstructionOther’

Used to begin drawing an obstruction.
The next click on the drawing canvas will
define one corner the chosen obstruction.

user

’startObstructionVent’ The next click on the drawing canvas will
define the center of the vent.

user

‘drawingObstructionChimney’,
‘drawingObstructionVelux’,
’drawingObstructionOther’

For desktop users, a rectangle
representing the obstruction will be drawn
between the first point and the cursor.
The rectangle will follow the cursor as it
moves over the canvas.
The next click on the drawing canvas will

RoofDrawer

Status value and Input Resulting event Set by

define the opposite corner of the
obstruction.

‘drawingObstructionVent’ For desktop users, a circle representing
the obstruction will be drawn using the
first point as its center, and the cursor as
its outer edge. The circle will follow the
cursor as it moves over the canvas.
The next click on the drawing canvas will
define the outer edge of the obstruction.

RoofDrawer

‘obstructionComplete’ The new obstruction becomes draggable
and resizeable.

RoofDrawer

‘drawingComplete’ Indicates that the roof drawing is
complete, and allows the use of
roofDrawer.generateData().

user

‘drawPanels’

input = {
roofIndex: Integar, the index
of the roof as returned from
the Easy-PV API.
panelLayout: ‘panelLayout’
of the roof as returned from
the Easy-PV API.
pitch: Integar, the pitch of the
roof.

}

This status should be set after using
roofDrawer.generateData() and calling the
Easy-PV API. Some of the parameters
returned by the API are used to draw the
solar panels for a specified roof onto the
canvas.

user

‘panelsComplete’ Indicates that the roof panels have been
succesfully drawn on the canvas.

RoofDrawer

‘undo’ Undoes the last drawing event. user

Using RoofDrawer.generateData()

The generateData() function can be called once the roof drawing is complete. An object is
returned which contains parameters required by the Easy-PV API.

Return object parameters:
success: A boolean which reflects whether or not the output was generated successfully.
error: A string which contains error details. Only present if success = false.
postcode: The postcode of the roof(s) location.
latitude: The latitude of the roof(s) location.
longitude: The longitude of the roof(s) location.
roofs: An array containing object(s) which define the outlined roof(s). Each roof object
contains its vertices and obstructions (if present) in the same format as required by the
Easy-PV API.

Example:

RoofDrawer.generateData();

// If unsuccessful, Returns an object in the following format:

{success: false, error:'Error using RoofDrawer.generateData(): You can only
generate a roof object once the drawing is complete. Status needs to be:
"drawingComplete", Current status is: "drawingRoofVertices"'}

// If successful, Returns an object in the following format:

{success: true, postcode: ‘CB24 6AZ’, latitude:52.237247, longitude:0.158021,

 roofs:[{vertices: [[15123,19390],[22545,19298],[24493,21895],
[12617,22044]],obstructions: [["velux",641,658,15679,20504]]}]}

Version History
This documentation is relevant for roofmap-0.2.js.

• Version 0.1: Released 24/09/2020.
• Version 0.2: Released 19/11/2020. RoofDrawer status ‘drawPanels’ added.

